Tel.: 02336 / 9130-66 Fax.: 02336 / 9130-88 JM Jäger Motorsport

Internet:

www.jaeger-motorsport.de

TITAN, dass absolute High-Tech Material

Titan, einer durch die hohen Anforderungen im Flugzeugbau interessant gewordenen Werkstoffe findet auch in anderen Bereichen, wie im Fahrzeugbau, Motorsport, Fahrradbau, Medizintechnik und in der Industrie zunehmend an Bedeutung.

Die Vorteile sind neben der spitzenmäßigen Optik die Korrosionsbeständigkeit, eine sehr hohe Zugfestigkeit und geringes Gewicht mit einer Dichte von ca. 4,4 g/cm³ (ca. 42% leichter als Stahl) und somit der ideale Werkstoff für höchste Anforderungen.

Der verwendete Werkstoff entspricht DIN Werkstoff-Nr. 3.7165 Ti6Al4V (6% Alu., 4% Vanadium, Rest Titan) und hat folgende physikalischen Eigenschaften: Zugfestigkeit: 930-1000 N/mm²

Die Gewinde werden grundsätzlich im Rollverfahren ausgeführt. (Bis auf ganz wenige Ausnahmen, wie z.B. DIN 912 / M2-M3)

Wir liefern auch Gewindestangen, Rundmaterial, Rohre und Bleche.

Alle Preise, wenn nicht anders angegeben in Titan natur. Hochglanzpoliert, blau oder gold eloxiert 15% Aufpreis.

Bei Sonderanfertigungen sind wir der richtige Ansprechpartner. Wir fertigen nach Muster oder Zeichnung.

Anzugsmomente: (als Richtwerte anzusehen)

М3	1,7 Nm
M4	3,57 Nm
M5	6,9 Nm
M6	11 Nm
M8	28,3 Nm
M10	57,6 Nm
M12	97,5 Nm

Preise je Stück incl. 19% MwSt.

Mit Erscheinen dieser Preisliste verlieren alle anderen Preislisten ihre Gültigkeit. Es gelten ausschließlich unsere Geschäfts- Verkaufs- und Lieferbedingungen.

Tab. 1 Vor- und Nachteile der Titanlegierungen

n weiteren chschmelturen). Die

bindungen itellen vererken und entmagnetnerg

erzen vor. a₂O₅-Anteil

schließung

u Ta- und

in Pulvern

beständig, und wird I läßt sich teilen verzh.

igkeit und n, Gleich-

s TiO, mit

nzentrierte pesonderer

' die Beta-

vorragende

nen Festig-

1 vielseitig ınderen Ti-

turen.

ıllt. irer ...nen orbau ver-

Vortelle	Anwendungsbeispiele						
Festigkeit wie hochfester Stahl, 43% leichter als Stahl.	Motorrad-Pleuelstange. Aus Stahl: 680 g, aus Ti-Leg.: 420 g = 38% leichter.						
Kleiner Elastizitätsmodul.	Dehnschraube. Erhöhte Sicherung, Spannungsausschläg infolge Betriebswechsellasten halb so groß wie bei Stahlschrauben.						
Hohe Warmfestigkeit.	s. Tabelle 2						
Hohe Korrosionsbeständigkeit.	Passivschicht wie Cu und Al, Silberüberzug gegen Kontaktkorrosion.						
Gute Dauerfestigkeit.	Bei guter Formgebung 10% höher als bei Stahl.						
Gute Schweißbarkeit.	Elektronenstrahlschweißen im Vakuum.						

Nachteile	Gegenmaßnahmen					
Hohe Kerbempfindlichkeit.	Weichere Querschnittsübergänge als bei Stahl, Oberflächen poliert.					
Schlechte Gleiteigenschaften.	Verhinderung von Fressen bei Reibpaarung durch Stahlmuttern bei Schrauben aus Ti-Leg., Oberflächenbehandlung (Tiduran/MPR 5 = Teflon-Eindiffusion).					
Schlechte Wärmeleitfähigkeit, hoher Formånderungswiderstand, niedrige Schmiedetemperatur.	Gleichmäßige Verteilung der Formänderungsarbeit über das Schmiedestück.					

Kurzzeichen	-196	Temp	gfestig N/mm peratur 100	°C	500	-196		N/mm nperat	ur °C	500	Bruch- deh- nung	Bri- nell- hårte HB30	Liefer- formen ¹	ngen Eigenschafter@ngo t
Unlegiertes Titan Ti99,8 bis Ti99,5	1310	300 bis 750	300 bis 560	170 bis 280	130 bis 250	1250	180 bis 480	180 bis 380	70 bis 170	40 bis 150	≥ 30 bis ≥ 16	120 bis 200	Ba, Bi, Dr, Gu, Pi, Pr, Ri, Ro, Schm, St	Geringere Festigkeit als TI-Legierungen, leicht schweißbar, gut varformbar. Verwendung: wenn Korrosionsbeständigkeit und optimale Verformbarkeit wichtiger sind als hohe Festigkeit, z. B. bei Geräten für die Verfahrenstechnik.
Alpha- leglerungen TiAl5Sn2	-	800 bis 1000	830	620	530	-	ı	-	-	,	≥ 8	250 bis 300	Ba, Bl, Dr, Pr, Ri, Ro, Schm, St	Flugzeug-, Raketen- und Raumfahrzeugzeilenbau: Wärmebelastete, tragende Strukturteile, Schweiß-konstrukturteile, Schweiß-konstrukturteile, Schweiß-konstrukturteile, Schweiß-konstrukturen, Drieberkabgas- und Heißgasführungen. Triebewerkbau: Verdichter- und Turbinenschaufeln, Brennkammern und Nachbrennergehäuse. Armaturen, Geräte. Langzeiteinsatztemp. 500 °C
Beta- legierung TiV13Cr11Al3	-	1300 bis 1400	1340	1230	940	ı	1190	1160	1030	840	≥ 4	220 bis 350	BI, Dr, Pr, Ro, Schm, St	Raketenbau: Brennkam- mergehäuse, Treibstoff- Druckbehälter, Struktur- teile (Beplankung), Niete. Langzeiteinsatztemp. 350°C
Alpha-Beta- legierung	1360	980 bis 1160		930	750	1320	1090	ı	750	600	9 bis 12	bis 310	Ba, Bl, Dr, Gu, Pl, Pr, Ri, Ro, Schm	Am häufigsten verwendete Legierung, z.B. Flugzeugzellenbau: Strukturteile, Fahrwerk., Beschläge und Schrauben. Hubschrauberbau: Rotorkopf, Blattanschlüßbeschl., Antriebswelle und Getriebeteile, Beschläge und Schrauben. Raketenbau: Brennkammergehäuse, Treibstoff-Drucksbehälter, Bescherkuns

Kurzzeichen: Ba — Band; Bl — Blech; Dr — Draht; Gu — Gußblock; Pl — Platten; Pr — Profile; Rl — Ringe; Ro — Rohre; Schm — Schmiedestücke; St — Stangen/Stäbe.
Verarbeitung durch spanende Formung, Gießen, Schmieden und isostatisches Pressen (s. pulvermetallurgische Verfahren S. 54).

Aluminium- und Titanschrauber Zweiradzubehör

8332 Schwelm

JÄGER MOTORSPORT
Aluminium- u. Titanschrauben
Motorradzubehör Blücherstraße 63 58332 Schwelm Tel. 0 23 36 / 91 30 66 / Fax 91 30 88 www.ja#ger-rnotorsport.de

Chemische Zusammensetzung

Chethische Zusahmensezung										
		Fe	C	N	0	H	AL	٧	Sonstige 🛬	$\Pi_{i,j}$
Werkstoff		Gew9	6 max., 2	rul, Bere	ich .		•		%	96
ASTM	DIN								1. 191	, 7 × Ki
Grade 1.	3.7025	0.20	0.08	0.05	0.12	0.013		(*		Rest
Grade 2	3.7035	0.25	80.0	0.05	0.18	0.013			۰.	Rest
Grade 3	3.7055	0.30	0.10	0.05	0.25	0.013				Rest
Grade 4	3,7065	0.35	0.10	0.05	0.35	0.013				Rest
	3.7025	0.20	0.08	0.05	0.12	0.013			0.15 Pd	Rest
Grade 7	3,7035	0.25	0.08	0.05	0.18	0.013			0.15 Pd	Rest
Grade 12		0.30	80.0	0.03	0.25	0.015			0.2-0.4 Mo 0.6-0.9 Ni	Rest
Grade 5	3.7165	0.25	0.08	0.05	0.20	0.015	5.5-6.75	3.5-4.5		Rest

Physikalische Eigenschaften

	Grade 1 3.7025 -	Grade 2 3.7035	Grade 3 3.7055	Grade 4 3.7065	Grade 7	Grade 12	Grade 5 3.7165
Ausdehnungsbeiwert 20-400°C, 10 °C	9.4	9.4	9.4	9.4	9,4	9.3	9.3
Spez Wärme 20–400°C, J/g · °C	0.52	0.52	0.52	0.54	0.52	0.55	0.57
Wärmeleitfähigkeit bei 20°C, W/m · °C	17	17	17	17	17	19	6.3
Spez. elektr. Widerstand bei 20°C, Ohm · mm²/m	0.56	0.57	0.57	0.60	0.57	0.52	1.71
E-Modul bei 20°C N/mm²	105000	105000	105 000	105000	105000	105 000	115000
Dichte bei 20°C	4.505	4.505	4.505	4.505	4.505	4.505	4.430

MECHANISCHE EIGENSCHAFTEN GEMÄß INTERNATIONALER NORMUNG

	Norm Pro- dukt		Zustand	Durchmesser	Rm min.	Rp _{0.2} min.	Deh- nung min.	mm s	Ein- schnu- rung	
		3.5		mm	MPa	MPa	%		%	
ade 1		Stab	nicht spezifiziert		240	170	24	4D	30	
t	ASTM B 348-95	Stab	nicht spezifiziert		240	170	24	4D	30	
	ISO 5832/2-1978		geglüht		240	170	24	A ₅ oder 50 mm	30	
rade 2	ASTM	Stab	nicht spezifiziert		345	275	20	4D	30	
	F 67-95 ASTM	Stab	nicht spezifiziert		345	275	20	4D	30	
	B 348-95 ISO		geglüht		345	230	20	A ₅ oder 50 mm	30	
Grade 4	5832/2:1978 ASTM	Stab	nicht spezifiziert		550	483	15	4D	25	
	F 67-95		kaltverfestigt		_	-	10	4D oder 50 mm		
	ASTM': B 348-95	Stab	nicht spezifiziert		550	483	15	4D	25	
	ISO 5832/2:1978		4A geglüht 4B kaltverfestigt		550 680	440 520	15	As oder 50 mm	25 18	
i Al6 V4	ASTM F 136-92		geglüht geglüht geglüht	d ≤ 0,813 0,813 < d ≤ 4,75 4,75 < d ≤ 44,45	860 860 860	795 795 795	10 10 10	zu vereinbaren 50,8 mm 4D o. 4*Breite	25	
ELI -	ASTM	Stab	nicht	d ≤ 76	828	759	10	4D	25	
	F 348-95 ASTM	Draht		d ≤ 3,2 3,2 ≤ d ≤ 4,8	793	759	10	50,8 mm 4D	:-	
2	B 863-95		geglüht	0,22,0	860	780	10	5D (min. 20 mm)		
TiAleNbī	5832/3:199 ASTM F 1295-92	u t ow.	geglüht		900	800	10	As oder 50 mm	25	

A₅; Meßlänge = 5,65 *√ s₀

Härteprüfung Ti-Schrauben

	Sechskant	schraube M10x35:		
TSS	Kopf:	353 - 35 8 - 358	HV1	360HV -> 1150 N/mm2
	Schaft:	360 - 362 - 362	HV 1	370 HV - 1180 N/mm2
e	Kem:	351 - 358 - 360	HV 1	380 HV = 1220 N/mm ² 390 HV => 1260 N/mm ² 400 HV -> 1300 N/mm ²
	Zylindersc	raube M8x20;		- wahachimling Kaltverfestigung
Tih	Kopf:	394 - 395 - 401	HV 1	5 0
	Schaff:	358 - 363 - 368	HV 1	oder vom Stavehen.
	Kem:	348 - 358 - 368	HV 1	

(Zum Vergleich: Klasse 10.9 - Soll: 320-380 HV)