Hyosunc

$250=$
HV250 EF

SERVICE MANUAL

FOREWORD

This manual contains an introductory description on HYOSUNG「EV250 EF』\＆「GT2501～EE』 and procedures for its inspection／service and overhaul of its main components．
It covers the differences from Carbure type and please refer to the service manual of＂Aquarilas 250
 （99000HR8310）』 and＂Combtraso \＆Combr 125 （99000－94710）』 for others which are not covered in this manual．
Other information considered as generally known is not included．
Read GENERAL INFORMATION section to familiarize yourself with outline of the vehicle and MAINTENANCE and other sections to use as a guide for proper inspection and service．
This manual will help you know the vehicle better so that you can assure your customers of your optimum and quick service．
＊This manual has been prepared on the basis of the latest specification at the time of publication．
If modification has been made since then， difference may exist between the content of this manual and the actual vehicle．
＊Illustrations in this manual are used to show the basic principles of operation and work procedures．
They may not represent the actual vehicle exactly in detail．

\triangle WARNING

This manual is intended for those who have enough knowledge and skills for servicing HYOSUNG vehicles．Without such knowledge and skills，you should not attempt servicing by relying on this manual only．
Instead，please contact your nearby authorized HYOSUNG motorcycle dealer．

GROUP INDEX

GENERAL INFORMATION

EI SYSTEM DIAGNOSIS

FUEL SYSTEM AND THROTTLE BODY

ELECTRICAL SYSTEM

HOW TO USE THIS MANUAL

TO LOCATE WHAT YOU ARE LOOKING FOR :

1. The text of this manual is divided into sections.
2. As the title of these sections are listed on the previous page as GROUP INDEX, select the section where you are looking for.
3. Holding the manual as shown at the right will allow you to find the first page of the section easily.
4. On the first page of each section, its contents are listed. Find the item and page you need.

SYMBOL

Listed in the table below are the symbols indicating instructions and other information necessary for servicing. The meaning of each symbol is also included in the table.

SYMBOL	DEFINITION	SYMBOL	DEFINITION
\square	Torque control required. Data beside it indicates specified torque.	$-\sqrt{1324}$	Apply THREAD LOCK "1324".
(1)	Apply oil. Use engine oil unless otherwise specified.		Apply or use brake fluid.
덧	Apply SUPER GREASE "A".	Avo	Measure in voltage range.
둔	Apply SUPER GREASE "C".	R	Measure in resistance range.
돕	Apply SILICONE GREASE.	${ }_{\text {A }}{ }_{\text {A }}$	Measure in current range.
댄	Apply MOLY PASTE.	㶡为	Measure in diode test range.
-1215	Apply BOND "1215".		Measure in continuity test range.
EORK	Use fork oil.	Tool	Use special tool.

ABBREVIATIONS USED IN THIS MANUAL

A		L	
ABDC	: After Bottom Dead Center	LCD	: Liquid Crystal Display
AC	: Alternating Current	LED	: Light Emitting Diode
API	: American Petroleum Institute	LH	: Left Hand
ATDC	: After Top Dead Center		
		M	
B		Max	: Maximum
BBDC	Before Bottom Dead Center	Min	: Minimum
BDC	: Bettom Dead Center		
BTDC	Before Top Dead Center	0	
D		O_{2} Sensor	: Oxygen Sensor ($\mathrm{O}_{2} \mathrm{~S}$)
DC	: Direct Current	R	
DOHC	: Double Over Head Camshaft	RH	: Right Hand
		RO Switch	: Roll Over Switch
E			
ECU	: Engine Control Unit, El Control Unit	S	
El	Electric fuel Injection, Electric fuel Injector	SAV Solenoid	: Secondary Air Valve Solenoid
ET Sensor	: Engine Temperature Sensor (ETS)	T	
		TDC	: Top Dead Center
F		TP Sensor	: Throttle Position Sensor (TPS)
FP	: Fuel Pump		
G			
GP Switch	: Gear Position Switch		
I			
IAP Sensor	: Intake Air Pressure Sensor (IAPS)		
IAT Sensor	: Intake Air Temperature Sensor (IATS)		
IG	: Ignition		
ISC Solenoid	: Idle Speed Control Solenoid		

WIRE COLOR

B	$:$ Black	Gr	$:$ Gray
L	$:$ Blue	Lg	$:$ Light green
Br	$:$ Brown	O	$:$ Orange
G	$:$ Green	R	$:$ Red

Sb	: Light blue
W	: White
Y	: Yellow

BL	: Black with Blue tracer	BBr	: Black with Brown tracer
BG	: Black with Green tracer	BO	: Black with Orange tracer
BR	: Black with Red tracer	BW	: Black with White tracer
BY	: Black with Yellow tracer	LB	: Blue with Black tracer
LG	: Blue with Green tracer	LR	: Blue with Red tracer
LW	: Blue with White tracer	LY	: Blue with Yellow tracer
BrB	: Brown with Black tracer	BrW	: Brown with White tracer
GB	: Green with Black tracer	GR	: Green with Red tracer
GY	: Green with Yellow tracer	GrB	: Gray with Black tracer
GrR	: Gray with Red tracer	GrW	: Gray with White tracer
OB	: Orange with Black tracer	OL	: Orange with Blue tracer
OG	: Orange with Green tracer	OR	: Orange with Red tracer
OW	: Orange with White tracer	OY	: Orange with Yellow tracer
RB	: Red with Black tracer	RW	: Red with White tracer
WB	: White with Black tracer	WL	: White with Blue tracer
WR	White with Red tracer	YB	: Yellow with Black tracer
YL	Yellow with Blue tracer	YG	: Yellow with Green tracer
YR	: Yellow with Red tracer		

GENERAL INFORMATION

EXTERIOR PHOTOGRAPH	6 （1－6－1）
EXTERIOR ILLUSTRATION［EV250 EE］	8 （1－6－3）
EXTERIOR ILLUSTRATION［GU2S0家區］	9 （1－7－1）
EXTERIOR ILLUSTRATION［Gで2SQ［E』］	10 （1－7－2）
FUNCTION OF EI SENSOR	11 （1－8－1）
SPECIFICATIONS	12 （1－8－2）

EXTERIOR PHOTOGRAPH

EXTERIOR PHOTOGRAPH

G7250 $5 \sqrt{5}$

G7250 른

EXTERIOR ILLUSTRATION [EV250 EE]

EXTERIOR ILLUSTRATION［G『250定是］

EXTERIOR ILLUSTRATION [Gて250 [Ef]

FUNCTION OF EI SENSOR

ECU (Engine Control Unit, EI Control Unit)

: ECU decide the fuel injection volume and ignition time to adjust the fuel injector opening and closing rate which is considered the engine speed, intake air pressure, intake air volume, engine temperature, oxygen volume and throttle opening angle, etc.

El (Electric fuel Injector)

: El spray the fuel to intake pipe by ECU's injection signal.
Fuel which is needed combustion in the combustion chamber is supplied from the fuel tank.

\star ET sensor (Engine Temperature Sensor : ETS)

: ET sensor communicate the perceived engine temperature to ECU.
ET sensor is located the outside of the cylinder to measure the engine temperature.

\star GP switch (Gear Position Switch)

: GP switch is used when start / stop and control ECU as the converted electrical signal of the gear position is supplied ECU.

IAP sensor (Intake Air Temperature : IAPS)

: IAP sensor measure the pressure which is generated from the intake pipe and compare with the provided absolute pressure, then analogize the air volume indirectly and help to work the fuel injector properly.

* IAT sensor (Intake Air Temperature Sensor : IATS)

: IAT sensor perceive the atmospheric temperature and is located the air cleaner case.

ISC solenoid (Idle Speed Control Solenoid)

: ISC solenoid is interlocked with the throttle body, so ECU control the engine idle speed.

O_{2} sensor (Oxygen Sensor: $\mathrm{O}_{2} \mathrm{~S}$)

: O2 sensor measure the oxygen volume from the exhaust gas and convert the oxygen volume into voltage value, then communicate the output voltage to ECU.

Pick-up Coil

: Pick-up coil perceive the front and rear cylinder's engine speed and realtime of piston position.

RO switch (Roll Over Switch)

: RO switch is the fuel cut-off system when the motorcycle is leaned over 60° for upset accident.

\star SAV solenoid (Secondary Air Valve Solenoid)

: SAV solenoid supply the fresh air to the exhaust pipe for decrease of the exhaust gas.

- TP sensor (Throttle Position Sensor : TPS)

: TP sensor detect the throttle opening angle and is located the throttle body. It decide the fuel injection volume and compensate the ignition time as inform idle • acceleration . deceleration condition and throttle full opening etc. to ECU.

SPECIFICATIONS

© DIMENSIONS AND MASS

ITEM	HV250 $=7$	CT250	C7250EF
Overall length	2,280 mm (89.8 in)	2,095 mm (82.5 in)	\longleftarrow
Overall width	885 mm (34.8 in)	720 mm (28.4 in)	780 mm (30.7 in)
Overall height	$1,095 \mathrm{~mm}(43.1 \mathrm{in})$	$1,135 \mathrm{~mm}$ (44.7 in)	$1,125 \mathrm{~mm}$ (44.3 in)
Wheelbase	$1,520 \mathrm{~mm}$ (59.8 in)	$1,430 \mathrm{~mm}$ (56.3 in)	\longleftarrow
Ground clearance	150 mm (5.9 in)	155 mm (6.1 in)	175 mm (6.9 in)
Mass	175 kg (386 lbs)	185 kg (408 lbs)	175 kg (386 lbs)

ENGINE

ITEM	$41250=7$	CT250EEF	CT250EF
Type	Four-stroke, DOHC, air-cooled and oil-cooled	\leftarrow	\longleftarrow
Number of cylinder	V -2 cylinder	\longleftarrow	\longleftarrow
Bore	57.0 mm (2.24 in)	\longleftarrow	\longleftarrow
Stroke	48.8 mm (1.92 in)	\longleftarrow	-
Piston displacement	$249 \mathrm{~cm}^{3}\left(15.2 \mathrm{in}^{3}\right.$)	\longleftarrow	\longleftarrow
Fuel system	Electric fuel Injection	\longleftarrow	\leftarrow
Starter system	Electric starter	\longleftarrow	\longleftarrow
Lubrication system	Wet sump	\longleftarrow	\leftarrow

© TRANSMISSION

○ CHASSIS

ITEM	$4 \times 250=7$	CT250EEF	$67250=7$
Front suspension	Telescopic type	-	-
Rear suspension	Swingarm type	-	\longleftarrow
Steering angle	40° (right \& left)	27° (right \& left)	\longleftarrow
Caster	34°	$25.5{ }^{\circ}$	\leftarrow
Trail	142 mm (5.59 in)	90 mm (3.54 in)	\longleftarrow
Front brake	Disk brake	Double disk brake	Disk brake
Rear brake	Drum brake	Disk brake	-
Front tire size	110/90-1659S	110/70-1754H	\longleftarrow
Rear tire size	150/80-15M/C 70S	150/70-1769H	\longleftarrow
Front fork stroke	120 mm (4.72 in)	\longleftarrow	\longleftarrow

ELECTRICAL

ITEM	$41250=7$	CT250 E	C7250 =7
Ignition type	ECU	\longleftarrow	\longleftarrow
Ignition timing	13° B.T.D.C. at $2,000 \mathrm{rpm}$ and 30° B.T.D.C. at $6,000 \mathrm{rpm}$	\longleftarrow	\longleftarrow
Spark plug	CR8E	\longleftarrow	\longleftarrow
Battery	12 V 10 Ah (MF)	\longleftarrow	\longleftarrow
Fuse	30 A \& 15 A	\longleftarrow	\longleftarrow
Head lamp $\quad \mathrm{Hl}$	$12 \mathrm{~V}-\mathrm{H} 4: 60 \mathrm{~W} \times 1$	$12 \mathrm{~V}-\mathrm{H} 1: 55 \mathrm{~W} \times 1$	$12 \mathrm{~V}-\mathrm{H} 4: 60 \mathrm{~W} \times 1$
Head lamp	$12 \mathrm{~V}-\mathrm{H} 4: 55 \mathrm{~W} \times 1$	$12 \mathrm{~V}-\mathrm{H} 3: 55 \mathrm{~W} \times 1$	$12 \mathrm{~V}-\mathrm{H} 4: 55 \mathrm{~W} \times 1$
Turn signal lamp	$12 \mathrm{~V}-\mathrm{RY} 10 \mathrm{~W} \times 4$	\longleftarrow	\leftarrow
Brake / Tail lamp	$12 \mathrm{~V}-\mathrm{P} 21 / 5 \mathrm{~W} \times 1$	LED type	\longleftarrow
License plate lamp	$12 \mathrm{~V}-\mathrm{W} 5 \mathrm{~W} \times 1$	\longleftarrow	\longleftarrow
Illumination lamp	12V-1.7 W $\times 2$	LED type	\longleftarrow
High beam indicator lamp	$12 \mathrm{~V}-1.7 \mathrm{~W} \times 1$	LED type	\longleftarrow
Turn signal indicator lamp(right \& left)	$12 \mathrm{~V}-1.7 \mathrm{~W} \times 2$	LED type	\longleftarrow
Neutral indicator lamp	$12 \mathrm{~V}-1.7 \mathrm{~W} \times 1$	LED type	\longleftarrow
Fuel meter lamp	$12 \mathrm{~V}-1.7 \mathrm{~W} \times 1$	LED type (Level type)	\longleftarrow
"Fl"(Fuel Injection) check lamp	LED type	\longleftarrow	\leftarrow

※ LED : Light Emitting Diode
© CAPACITIES

ITEM		$4 V 250=7$	$C T 250 E=7$	C7250E7
Fuel tank		14.0 \&	17.0 \&	\longleftarrow
Engine oil	Oil change	1,450 ml	\longleftarrow	\longleftarrow
	Oil and filter change	$1,500 \mathrm{ml}$	\longleftarrow	\longleftarrow
	Engine overhaul	1,800 ml	\longleftarrow	\longleftarrow
Front fork oil capacity (One side)		260 cc	$400 \pm 2.5 \mathrm{cc}$	\longleftarrow

NOTE

The specifications are subject to change without notice.

Downloaded from www.Manualslib.com manuals search engine

EI SYSTEM DIAGNOSIS

PRECAUTIONS IN SERVICING

When handling the component parts or servicing the El system, observe the following points for the safety of the system.

ELECTRICAL PARTS

■ CONNECTOR / COUPLER

- When connecting a connector, be sure to push it in until a click is felt.
- With a lock type coupler, be sure to release the lock when disconnecting, and push it in fully till the works when connecting it.
- When disconnecting the coupler, be sure to hold the coupler body and do not pull the lead wires.
- Inspect each terminal on the connector / coupler for looseness or bending.
- Inspect each terminal for corrosion and contamination.
The terminals must be clean and free of any foreign material which could impede proper terminal contact.
- Inspect each lead wire circuit for poor connection by shaking it by hand lightly. If any abnormal condition is found, repair or replace.
- When taking measurements at electrical connectors using a tester probe, be sure to insert the probe from the wire harness side (backside) of the connector / coupler.

- When connecting meter probe from the terminal side of the coupler (connection from harness side not being possible), use extra care not to force and cause the male terminal to bend or the female terminal to open.
Connect the probe as shown to avoid opening of female terminal.
Never push in the probe where male terminal is supposed to fit.
- Check the male connector for bend and female connector for excessive opening. Also check the coupler for locking (looseness), corrosion, dust, etc.

FUSE

- When a fuse blows, always investigate the cause to correct it and then replace the fuse.
- Do not use a fuse of a different capacity.
- Do not use wire or any other substitute for the fuse.

○ ECU / VARIOUS SENSORS

- Since each component is a high-precision part, great care should be taken not to apply any sharp impacts during removal and installation.
- Be careful not to touch the electrical terminals of the ECU.
The static electricity from your body may damage this part.

4-1-3 El SYSTEM DIAGNOSIS

- When disconnecting and connecting the ECU, make sure to turn "OFF" the ignition switch, or electronic parts may get damaged.
- Battery connection in reverse polarity is strictly prohibited.
Such a wrong connection will damage the components of the El system instantly when reverse power is applied.
- Removing any battery terminal of a running engine is strictly prohibited.
The moment such removal is made, damaging counter electromotive force will be applied to the ECU which may result in serious damage.
- Before measuring voltage at each terminal, check to make sure that battery voltage is 11 V or higher.
Terminal voltage check at low battery voltage will lead to erroneous diagnosis.

- Never connect an ohmmeter to the ECU with its coupler connected. If attempted, damage to ECU or sensors may result.
- Be sure to use a specified voltmeter / ohmmeter. Otherwise, accurate measurements may not be obtained and personal injury may result.

○ USING TESTERS

- Use well-charged batteries in the tester.
- Be sure to set the tester to the correct testing range.

\square USING THE TESTER

- Incorrectly connecting the \oplus and \ominus probes may cause the inside of the tester to burnout.
- If the voltage and current are not known, make measurements using the highest range.
- After using the tester, turn the power off.

EI SYSTEM TECHNICAL FEATURES

© 「RU250 EF」 \＆「GT250，REF」 DIAGRAM

© INJECTION TIME (INJECTION VOLUME)

The factors to determine the injection time include the basic fuel injection time, which is calculated on the basis of intake air pressure, engine speed and throttle opening angle, and various compensations.
These compensations are determined according to the signals from various sensors that detect the engine and driving conditions.

○ COMPENSATION OF INJECTION TIME (VOLUME)

The following different signals are output from the respective sensors for compensation of the fuel injection time (volume).

SIGNAL	DESCRIPTION
ENGINE TEMPERATURE SENSOR SIGNAL	When engine temperature is low, injection time (volume) is increased.
INTAKE AIR TEMPERATURE SENSOR SIGNAL	When intake air temperature is low, injection time (volume) is increased.
BATTERY VOLTAGE SIGNAL	ECU operates on the battery voltage and at the same time, it monitors the voltage signal for compensation of the fuel injection time (volume). A longer injection time is needed to adjust injection volume in the case of low voltage.
ENGINE RPM SIGNAL	At high speed, the injection time (volume) is increased.
STARTING SIGNAL	When starting engine, additional fuel is injected during cranking engine.
ACCELERATION SIGNAL /	
DECELERATION SIGNAL	During acceleration, the fuel injection time (volume) is increased in accordance with the throttle opening speed and engine rpm. During deceleration, the fuel injection time (volume) is decreased.

© INJECTION STOP CONTROL

SIGNAL	DESCRIPTION
ROLL OVER SWITCH SIGNAL (FUEL CUT-OFF)	When the motorcycle rolls over, the roll over switch sends a signal to the ECU. Then, this signal cuts OFF current supplied to the fuel pump, fuel injector and ignition coil.
OVER-REV. LIMITER SIGNAL	The fuel injectors stop operation when engine rpm reaches rev. limit rpm.

© EI SYSTEM PARTS LOCATION [RU250 EF]

(1) Speedometer
(5) GP switch
(2) Ignition coil, NO. 1
(6) Fuel injector, NO. 1
(3) Ignition coil, NO. 2
(7) Fuel injector, NO. 2
(4) Pick-up coil
(8) TP sensor

(9) ISC solenoid
(10) IAT sensor
(11) RO switch
(12) Fuel pump relay
(13) IAP sensor, NO. 2
(14) IAP sensor, NO. 1
(15) ET sensor
(16) Oxygen sensor
(17) SAV solenoid

○ EI SYSTEM PARTS LOCATION [GT250/REE]

(1) Speedometer
(6) Pick-up coil
(2) Fuel injector, NO. 1
(7) Ignition coil, NO. 1
(3) Fuel injector, NO. 2
(8) Ignition coil, NO. 2
(4) IAT sensor
(9) TP sensor

(10) ISC solenoid
(14) IAP sensor, NO. 1
(11) Fuel pump relay
(15) ET sensor
(12) RO switch
(16) Oxygen sensor
(17) SAV solenoid

SELF-DIAGNOSIS FUNCTION [GT250I~EF]

The self-diagnosis function is incorporated in the ECU.
The function has two modes, "USER MODE" and "DEALER MODE".
The user can only be notified by the LCD(DISPLAY) panel (1) and the "Fl" check lamp " (FI) "(2). To check the function of the individual El system devices, the dealer mode is prepared. In this check, the special tool is necessary to read the code of the malfunction items.

© USER MODE

The "Fl" check lamp" (AT) " (2) comes on for about three seconds whenever the ignition switch is set to "ON" position with the engine stopped as a test of the injection system operation.
The check lamp must go off after three seconds.

MALFUNCTION		LCD (DISPLAY) INDICATION ©	"FI" CHECK LAMP INDICATION (2)	INDICATION MODE
"NO"		Speedometer	-	-
"YES"	Engine can start	Speedometer and "FI" letters A	"Fl" check lamp comes on.	Each 2 sec. Speedometer or "Fl" letters is indicated.
	Engine can not start	"FI" letters B	"Fl" check lamp comes on and blinks.	"Fl" letters is indicated continuously.

A
When one of the signals is not received by ECU, the fail-safe circuit works and injection is not stopped.
In this case, "Fl" letters and speedometer are indicated in the LCD panel (1) and motorcycle can run.
B
The injection signal is stopped, when the pick-up coil signal, roll over switch signal, NO. 1 \& NO. 2 ignition signals, NO. 1 \& NO. 2 injector signals, fuel pump relay signal or ignition switch signal is not sent to ECU.
In this case, "Fl" letters is indicated in the LCD panel (1). Motorcycle does not run.
"CHE" : The LCD panel (1) indicates "CHE" letters when no communication signal from the ECU is received for 3 seconds.

For example, The ignition switch is turned "ON" position, and the engine stop switch is turned " \varnothing " position. In this case, the speedometer does not receive any signal from ECU, and the LCD panel (1) indicates "CHE" letters.
If "CHE" letters is indicated, the LCD panel (1) does not indicate the trouble code.
The possible cause of this indication is as follows, Engine stop switch is in " \cap " position. Ignition fuse is burnt. It is necessary to check the wiring harness between ECU and speedometer couplers.

○ DEALER MODE

The defective function is memorized in the ECU.
Use the special tool's coupler to connect to the dealer mode coupler. (Refer to page 4-1-20)
The memorized malfunction code is displayed on LCD (DISPLAY) panel $\mathbb{A}^{(}$.
Malfunction means that the ECU does not receive signal from the devices.
These affected devices are indicated in the code form.
이응 Mode select switch : 09900-27000

CAUTION

Do not disconnect the ECU lead wire couplers, before checking the malfunction code, or the malfunction code memory is erased and the malfunction code can not be checked.

* Confirm the malfunction code after turn the ignition switch "ON" position or cranking the engine for few seconds.

MALFUNCTION	LCD (DISPLAY) INDICATION ©	"FI" CHECK LAMP INDICATION ©	INDICATION MODE
"NO"	C	"Fl" check lamp goes off.	-
"YES"	$\mathrm{C}^{* *}$ code is indicated from small numeral to large one.		For each 2 sec., code is indicated.

SELF-DIAGNOSIS FUNCTION [ev250 Es]

The self-diagnosis function is incorporated in the ECU.
The function has two modes, "USER MODE" and "DEALER MODE".
The user can only be notified by the "Fl" check lamp " \mathbb{H} " (1 .
To check the function of the individual El system devices, the dealer mode is prepared.
In this check, the special tool is necessary to read the code of the malfunction items.

© USER MODE

The "Fl" check lamp" (\mathbb{H}) " (1) comes on for about three seconds whenever the ignition switch is set to "ON" position with the engine stopped as a test of the injection system operation.
The check lamp must go off after three seconds.
If the "Fl" check lamp " \mathbb{F}) " ${ }^{(1) \text { comes on during normal engine operation, it means that the electric fuel injection }}$ system is not operating correctly.
When this is the case, inspect the electric fuel injection system to refer to "Dealer mode".

○ DEALER MODE

The defective function is memorized in the ECU.
Use the special tool's coupler to connect to the dealer mode coupler. (Refer to page 4-1-20)
The memorized malfunction code is displayed with blinks signal of the "Fl" check lamp " ${ }^{A}$) " ${ }^{(A) \text {. }}$
Malfunction means that the ECU does not receive signal from the devices.
These affected devices are displayed blinks signal of the "Fl" check lamp " ${ }^{\oplus}$ " ${ }^{(A)}$.
四 Mode select switch : 09900-27000

\triangle CAUTION

Do not disconnect the ECU lead wire couplers, before checking the malfunction code, or the malfunction code memory is erased and the malfunction code can not be checked.

* Confirm the malfunction code after turn the ignition switch "ON" position or cranking the engine for few seconds.

MALFUNCTION	"FI" CHECK LAMP INDICATION ©A
"NO"	"Fl" check lamp goes off.
"YES"	Malfunction code is displayed from small numeral blinks signal to large one.

回GT2501REF

In the LCD (DISPLAY) panel ${ }^{(1)}$, the malfunction code is indicated from small code to large code.

- RV250 EF

In the "Fl" check lamp " (FA) " (2), the malfunction code is displayed from small numeral blinks signal to large numeral blinks signal.

GT2501REF

HV250 EF

EI SYSTEM TROUBLESHOOTING

CUSTOMER COMPLAINT ANALYSIS

Record details of the problem (failure, complaint) and how it occurred as described by the customer.
For this purpose, use of such an inspection form will facilitate collecting information to the point required for proper analysis and diagnosis.

■ EXAMPLE : CUSTOMER PROBLEM INSPECTION FORM

User name :	Model :	VIN :	
Date of issue :	Date Reg. :	Date of problem :	Mileage :

"Fl" Check lamp	\square Always ON \square Sometimes ON \square Always OFF $\quad \square$ Good condition	
Malfunction display / code (LCD panel) or Blinks signal ("Fl" check lamp)	\square No code \square Malfunction code ()

PROBLEM SYMPTOMS

\square Difficult Starting	\square Poor Driveability
\square No cranking	\square Hesitation on acceleration
\square No initial combustion	\square Back fire / \square After fire
\square No combustion	\square Lack of power
\square Poor starting at	\square Surging
(\square cold \square warm \square always)	\square Abnormal knocking
\square Other	\square Engine rpm jumps briefly
	\square Other__
\square Poor Idling	\square Engine Stall when
\square Poor fast Idle	\square Immediately after start
\square Abnormal idling speed	\square Throttle valve is opened
(\square High \square Low) (rpm)	\square Throttle valve is closed
\square Unstable	\square Load is applied
\square Hunting (rpm. to rpm)	\square Other
\square Other	
\square OTHERS :	

MOTORCYCLE / ENVIRONMENTAL CONDITION WHEN PROBLEM OCCURS	
Environmental condition	
Weather Temperature Frequency Road	\square Fair \square Cloudy \square Rain \square Snow \square Always \square Other \square Hot \square Warm \square Cool \square Cold ($\left.\quad{ }^{\circ} \mathrm{F} / \quad{ }^{\circ} \mathrm{C}\right) \quad \square$ Always \square Always \square Sometimes (times / day, month) \square Only once \square Under certain condition \square Urban \square Suburb \square Highway \square Mountainous (\square Uphill \square Downhill) \square Tarmacadam \square Gravel \square Other
Motorcycle condition	
Engine condition	\square Cold \square Warming up phase \square Warmed up \square Always \square Other at starting \square Immediately after start \square Racing without load \square Engine speed (rpm)
Motorcycle condition	During driving : Constant speed Accelerating Decelerating Right hand corner Left hand corner At stop Motorcycle speed when problem occurs (km/h, Mile/h) Other \qquad

NOTE
The above form is a standard sample. If should be modified according to conditions characteristic of each market.

SELF-DIAGNOSTIC PROCEDURES

Don't disconnect couplers from ECU, battery cable from battery, ECU ground wire harness from engine or main fuse before confirming malfunction code (self-diagnostic trouble code) stored in memory. Such disconnection will erase memorized information in ECU memory.
Malfunction code stored in ECU memory can be checked by the special tool.
To check malfunction code, read SELF-DIAGNOSIS FUNCTION "DEALER MODE" (Refer to page $4-1-13,15,16 \& 17)$ carefully to have good
 understanding as to what functions are available and how to use it.

Be sure to read "PRECAUTIONS for Electrical Circuit Service" (Refer to page 4-1-1) before inspection and observe what is written there.

- Remove the rear seat. (GT2501~EET)
- Remove the front seat. (EV250 EF)
- Connect the special tool to the dealer mode coupler at the wiring harness, and the ignition switch is set to "ON" position.
- Turn the special tool's switch "ON" position and check the malfunction code to determine the malfunction part.

圆 Mode select switch : 09900-27000

	NOTE
	The dealer mode coupler is located under the rear seat. (GT2501~EEF) The dealer mode coupler is located under the front seat. (RV250 EF)

SELF-DIAGNOSIS RESET PROCEDURE

- After repairing the trouble, turn the ignition switch "OFF" position and turn "ON" position again.
- If "C " (LCD INDICATION (1)) is indicates, the malfunction codes are cleared. (GT2501 REF)
- If not blink ("Fl" check lamp (2), the malfunction codes are cleared. (EV25O EF)
- Disconnect the special tool from the dealer mode coupler.

HV250 EF

MALFUNCTION CODE AND DEFECTIVE CONDITION

MALFUNCTION CODE	DETECTED ITEM	DETECTED FAILURE CONDITION
C		CHECK FOR

MALFUNCTION CODE	DETECTED ITEM	DETECTED FAILURE CONDITION
		CHECK FOR
C24 / C25	Ignition coil (IG coil), NO. 1 / NO. 2	Ignition signal is interrupted continuous by 31 times or more when ECU confirm ignition surge at each combustion chamber. In this case, the code C24 or C25 is indicated.
		Ignition coil, wiring / coupler connection, power supply from the battery.
C27	Idle speed control solenoid (ISC solenoid)	The idle speed control solenoid step should be the following. O step \leqq solenoid step $\leqq 250$ step Without the above range, C27 is indicated.
		Idle speed control solenoid, lead wire / coupler connection.
C31	Gear position switch (GP switch)	It judges from gear position voltage, engine speed and throttle position by ECU, when 0.15 V < Gear position voltage < 3.93 V for more 2 sec.. If gear position voltage get out of the above voltage, C31 is indicated.
		Gear position switch, wiring / coupler connection, gearshift cam etc.
C32 / C33	Fuel injector, NO. 1 / NO. 2	Injector signal is interrupted continuous for more than 1 sec . when ECU confirm injector running surge at each combustion chamber, C32 or C33 is indicated.
		Injector, wiring / coupler connection, power supply to the injector.
C37	Secondary air valve solenoid (SAV solenoid)	No voltage is applied from ECU to secondary air valve solenoid by 400 sec.. In this case, the code 37 is indicated.
		Secondary air valve solenoid, lead wire / coupler connection.
C41	Fuel pump relay	Voltage is applied continuous for more than 5 sec., battery voltage $\geqq 3.2 \mathrm{~V}$ when fuel pump relay is "OFF" position or battery voltage $<1.5 \mathrm{~V}$ when fuel pump relay is " ON " position. In this case, the code 41 is indicated.
		Fuel pump relay, connecting lead wire, power source to fuel pump relay, fuel injector.
C43	Oxygen sensor heater ($\mathrm{O}_{2} \mathrm{~S}$ heater)	The oxygen sensor heater signal is not inputted in ECU.
		Oxygen sensor heater, lead wire / coupler connection.

"C12" PICK-UP COIL CIRCUIT MALFUNCTION

DETECTED CONDITION

The pick-up coil signal does not reach ECU for more than 3 sec . after ECU receiving the ignition switch signal.

INSPECTION

1) Remove the frame cover.
2) Turn the ignition switch "OFF" position.
3) Check the pick-up coil coupler (1) for loose or poor contacts.
If OK, then measure the pick-up coil resistance.
4) Disconnect the pick-up coil coupler (1) and measure the resistance.

Pick-up coil resistance

$$
\text { Approx. } 85 \sim 105 \Omega
$$

($\mathrm{G}-\mathrm{L}$)
\& Tester knob indication : Resistance (Ω)
5) If OK, then check the continuity between each terminal and ground.

Pick-up coil continuity
$\infty \Omega$ (Infinity)
(G G Ground)
(L - Ground)
(G - Ground)
$(\mathrm{L}$ - Ground)

POSSIBLE CAUSE

- Metal particles or foreign materiel being attached on the pick-up coil and rotor tip.
- Pick-up coil circuit open or short.
- Pick-up coil malfunction.
- ECU malfunction.

回 Tester knob indication : Resistance (Ω)

Are the resistance and continuity OK?

	- L or G wire open or shorted to ground, or poor (12) or (J3) connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. YES Recheck each terminal and wire harness for open circuit and poor connection.
NO	Loose or poor contacts on the pick- up coil coupler or ECU coupler. Replace the pick-up coil with a new one.

"C14" TP SENSOR CIRCUIT MALFUNCTION

DETECTED CONDITION	POSSIBLE CAUSE
Output voltage is out of the specified range for 2 sec. and more.	\bullet TP sensor circuit open or short.
$0.1 \mathrm{~V} \leqq$ Sensor voltage $\leqq 4.8 \mathrm{~V}$	- TP sensor malfunction.
	\bullet ECU malfunction.

INSPECTION

Step 1

1) Turn the ignition switch "OFF" position.
2) Check the TP sensor coupler for loose or poor contacts.
If OK, then measure the TP sensor input voltage.
3) Disconnect the TP sensor coupler (1).

Is the input voltage OK?

YES	Go to Step 2.
NO	Loose or poor contacts on the ECU coupler. Open or short circuit in the OB wire or GR wire.

Step 2

1) Remove the frame cover.
2) Turn the ignition switch "OFF" position.
3) Disconnect the TP sensor coupler.
4) Check the continuity between $\triangle(A)(L Y)$ and ground.

Tester knob indication : Resistance (Ω)

Is the continuity OK?

YES	Go to Step 3.
NO	Replace the TP sensor with a new one.

Step 3

1) Connect the TP sensor coupler.
2) Insert the needle pointed probes to the lead wire coupler.
3) Turn the ignition switch "ON" position.

Measure the TP sensor output voltage at the coupler [between $\oplus(\mathbb{A}: L Y)$ and $\ominus(B): G R)$] by turning the throttle grip.

TP sensor output voltage	
Throttle valve is closed	Approx. 0.3 V
Throttle valve is opened	Approx. 4.5 V

Tester knob indication : Voltage (---)

Is the output voltage OK?

	OB, LY or GR wire open or shorted to ground, or poor (B2) F3) or (34) connection of ECU coupler. If wire and connection are OK, intermittent trouble or faulty ECU. RES Recheck each terminal and wire harness for open circuit and poor connection.
NO	If check result is not satisfactory, replace TP sensor with a new one.

"C15" ET SENSOR CIRCUIT MALFUNCTION

DETECTED CONDITION
Output voltage is out of the specified range for 2 sec. and more. $0.08 \mathrm{~V} \leqq$ Sensor voltage $\leqq 4.65 \mathrm{~V}$

INSPECTION

1) Turn the ignition switch "OFF" position.
2) Check the ET sensor coupler for loose or poor contacts.
If OK , then measure the ET sensor resistance.

3) Disconnect the ET sensor coupler.
4) Measure the resistance between the terminals (1) and (2).

ET sensor resistance	$0.102 \sim 81.000 \mathrm{~K} \Omega$ [When Engine temperature is $-20^{\circ} \mathrm{C} \sim 180^{\circ} \mathrm{C}$ $\left(-4^{\circ} \mathrm{F} \sim 356^{\circ} \mathrm{F}\right)$]

嗱 Tester knob indication : Resistance (KQ)

ET sensor resistance	
Engine Temp.	Resistance (To ECU)
$-20^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right)$	Approx. $75.5 \mathrm{~K} \Omega$
$0^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right)$	Approx. $28.7 \mathrm{~K} \Omega$
$20^{\circ} \mathrm{C}\left(68{ }^{\circ} \mathrm{F}\right)$	Approx. $12.2 \mathrm{~K} \Omega$
$40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$	Approx. $5.6 \mathrm{~K} \Omega$
$60^{\circ} \mathrm{C}\left(140{ }^{\circ} \mathrm{F}\right)$	Approx. $2.8 \mathrm{~K} \Omega$
$80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$	Approx. $1.5 \mathrm{~K} \Omega$
$120^{\circ} \mathrm{C}\left(248{ }^{\circ} \mathrm{F}\right)$	Approx. $0.5 \mathrm{~K} \Omega$
$140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$	Approx. $0.3 \mathrm{~K} \Omega$
$160^{\circ} \mathrm{C}\left(320{ }^{\circ} \mathrm{F}\right)$	Approx. $0.2 \mathrm{~K} \Omega$
$180^{\circ} \mathrm{C}\left(356{ }^{\circ} \mathrm{F}\right)$	Approx. $0.13 \mathrm{~K} \Omega$

凅 Tester knob indication : Resistance (KQ)

Is the resistance OK?

	-Br or GR wire open or shorted to ground, or poor (Gi) or (C4) connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection. NOReplace the ET sensor with a new one.

"C17" or "C18" IAP SENSOR CIRCUIT MALFUNCTION

	HV250 $=7$ CODE	
C17		
C18		

DETECTED CONDITION

IAP sensor voltage is out of the specified range for 6 sec. and more.
$0.5 \mathrm{~V} \leqq$ Sensor voltage $\leqq 4.5 \mathrm{~V}$
NOTE :
Note that atmospheric pressure varies depending on weather conditions as well as altitude.
Take that into consideration when inspecting voltage.

POSSIBLE CAUSE

- Clogged vacuum passage between throttle bodies and IAP sensors.
- Air being drawn from vacuum passage between throttle bodies and IAP sensors.
- IAP sensor circuit open or shorted to ground.
- IAP sensor malfunction.
- ECU malfunction.

回 INSPECTION

*Step 1

1) Remove the fuel tank.
2) Turn the ignition switch "OFF" position.
3) Check the IAP sensor NO. 1 coupler (1) and NO. 2 coupler (2) for loose or poor contacts.
If OK, then measure the IAP sensor input voltage.
4) Disconnect the IAP sensor couplers NO.1 (1) and NO. 2 (2).

5) Turn the ignition switch "ON" position.
6) Measure the voltage at the OB wire and ground. If OK , then measure the voltage at the OB wire and GR wire.

IAP sensor input voltage	$(\oplus \mathrm{OB}-5.5 \mathrm{~V}$
	$(\oplus \mathrm{OB}-\ominus \mathrm{Ground})$

Is the input voltage OK?

YES	Go to Step 2.
NO	ECU Loose or poor contacts on the ECU coupler. Open or short circuit in the OB wire or GR wire.

\diamond Step 2

1) Connect the IAP sensor couplers NO.1 (1) and NO. 2 (2).
2) Insert the needle pointed probes to the lead wire coupler.
3) Start the engine at idle speed.
4) Measure the IAP sensor output voltage at the wire side coupler [between $\mathrm{BL}(\mathrm{NO} .1)$ or $\mathrm{BY}(\mathrm{NO} .2)$ and GR wires].

AP sensor	Approx. 3.7~3.9 V
	$(\mathrm{NO} .1] \oplus \mathrm{BL}-\ominus \mathrm{GR}$,
	$[\mathrm{NO} .2] \oplus \mathrm{BY}-\ominus \mathrm{GR})$

Is the output voltage OK?

YES	- OB(NO.1), OB(NO.2), BL(NO.1), $\mathrm{BY}(\mathrm{NO}, 2)$ or GR wire open or shorted to ground, or poor (A1) (NO.1), (A2)(NO.2), (F1) (NO.1), (G2) (NO.2) or (34) connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. Recheck each terminal and wire harness for open circuit and poor connection.
NO	If check result is not satisfactory, replace IAP sensor with a new one.

Output voltage (Input voltage 5 V , ambient temp. $25^{\circ} \mathrm{C}, 77^{\circ} \mathrm{F}$)				
ALTITUDE (Reference)		ATMOSPHERIC PRESSURE		OUTPUT VOLTAGE
(ft)	(m)	(mmHg)	kPa	(V)
$\begin{gathered} 0 \\ \mid \\ 2000 \end{gathered}$	$\begin{gathered} 0 \\ \mid \\ 610 \end{gathered}$	$\begin{gathered} 760 \\ \mid \\ 707 \end{gathered}$	$\begin{gathered} 100 \\ \mid \\ 94 \end{gathered}$	Approx. $3.7 \sim 3.9$
$\begin{gathered} 2001 \\ \stackrel{\mid}{\mid} \\ 5000 \end{gathered}$	$\begin{gathered} 611 \\ \mid \\ 1524 \end{gathered}$	$\begin{gathered} 707 \\ \mid \\ 634 \end{gathered}$	94	Approx. $3.3 \sim 3.7$
$\begin{gathered} 5001 \\ \mid \\ 8000 \end{gathered}$	$\begin{gathered} 1525 \\ \mid \\ 2438 \end{gathered}$	$\begin{gathered} 634 \\ \mid \\ 567 \end{gathered}$	$\begin{gathered} 85 \\ \mid \\ 76 \end{gathered}$	Approx. $3.0 \sim 3.3$
$\begin{gathered} 8001 \\ \mid \\ 10000 \end{gathered}$	$\begin{gathered} 2439 \\ \mid \\ 3048 \end{gathered}$	$\begin{gathered} 567 \\ 526 \\ 52 \end{gathered}$	$\begin{gathered} 76 \\ \mid \\ 70 \end{gathered}$	Approx. $2.7 \text { ~ } 3.0$

"C21" IAT SENSOR CIRCUIT MALFUNCTION

DETECTED CONDITION	POSSIBLE CAUSE
Output voltage is out of the specified range for 6 sec. and more.	- IAT sensor circuit open or short. $0.08 \mathrm{~V} \leqq$ Sensor voltage $\leqq 4.75 \mathrm{~V}$
IAT sensor malfunction.	
• ECU malfunction.	

INSPECTION

1) Remove the fuel tank.
2) Turn the ignition switch "OFF" position.
3) Check the IAT sensor coupler for loose or poor contacts.
If OK, then measure the IAT sensor resistance.
4) Disconnect the IAT sensor coupler.

5) Measure the resistance between the terminals (1) and (2).

	$0.081 \sim 48.352 \mathrm{~K} \Omega$
	[When Intake air
	temperature is
$-40^{\circ} \mathrm{C} \sim 130^{\circ} \mathrm{C}$	
	$\left.\left(-40^{\circ} \mathrm{F} \sim 266^{\circ} \mathrm{F}\right)\right]$

Tester knob indication : Resistance ($\mathrm{K} \Omega$)

IAT sensor resistance

Intake Air Temp.	Resistance
$-40{ }^{\circ} \mathrm{C}\left(-40{ }^{\circ} \mathrm{F}\right)$	$44.642 \mathrm{~K} \Omega \pm 5 \%$
$-20^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right)$	$14.958 \mathrm{~K} \Omega \pm 5 \%$
$0{ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right)$	$5.734 \mathrm{~K} \Omega \pm 5 \%$
$20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	$2.438 \mathrm{~K} \Omega \pm 5 \%$
$40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$	$1.141 \mathrm{~K} \Omega \pm 5 \%$
$60^{\circ} \mathrm{C}\left(140{ }^{\circ} \mathrm{F}\right)$	$0.579 \mathrm{~K} \Omega \pm 5 \%$
$80^{\circ} \mathrm{C}\left(176{ }^{\circ} \mathrm{F}\right)$	$0.315 \mathrm{~K} \Omega \pm 5 \%$
$100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$	$0.182 \mathrm{~K} \Omega \pm 5 \%$
$120{ }^{\circ} \mathrm{C}\left(248{ }^{\circ} \mathrm{F}\right)$	$0.111 \mathrm{~K} \Omega \pm 5 \%$
$130{ }^{\circ} \mathrm{C}\left(266{ }^{\circ} \mathrm{F}\right)$	$0.088 \mathrm{~K} \Omega \pm 5 \%$

回 Tester knob indication : Resistance (KQ)

Is the resistance OK?

YES	- Lg or GR wire open or shorted to ground, or poor G3 or (84 connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection.
NO	Replace the IAT sensor with a new one.

"C22" OXYGEN SENSOR CIRCUIT MALFUNCTION

DETECTED CONDITION
Oxygen sensor signal is not inputted in ECU since then 600 sec . after the engine run.

INSPECTION

1) Remove the front seat and frame cover.
2) Turn the ignition switch "OFF" position.
3) Check the Oxygen sensor coupler (1) for loose or poor contacts.

Is OK?

YES	- BR or GR wire open or shorted to ground, or poor (HB) or (CA) connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection.
NO	Replace the Oxygen sensor.

POSSIBLE CAUSE

- Oxygen sensor, Oxygen sensor heater circuit open or short.
- Oxygen sensor, Oxygen sensor heater malfunction.
- ECU malfunction.

"C23" RO SWITCH CIRCUIT MALFUNCTION

INSPECTION

1) Remove the front seat.
2) Turn the ignition switch "OFF" position.
3) Check the RO switch coupler for loose or poor contacts.
If OK , then measure the RO switch resistance.
4) Disconnect the RO switch coupler.
5) Measure the resistance at the wire coupler (switch side) between GR and YL wires of the RO switch at horizontal place.

Also, measure the resistance when leaning of the motorcycle.
6) Measure the resistance when it is leaned more than 60°, left and right, from the horizontal level.

Tester knob indication : Resistance (Ω)

Is the resistance OK?

YES	- YL or GR wire open or shorted to ground, or poor ©2 or (CA connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection.
NO	- Loose or poor contacts on the ECU coupler. -Open or short circuit in the YL wire or GR wire. Replace the RO switch with a new one.

"C24" or "C25" IGNITION COIL MALFUNCTION

Refer to the IGNITION COIL for details. (Refer to page 5-5)

GT2501E2EF CODE	HV250 $=\boldsymbol{F}$ CODE	
C24		
C25		

"C27" ISC SOLENOID RANGE ABNORMAL

G7250/®EF CODE	HV250 =7 CODE
C27	
DETECTED CONDITION	POSSIBLE CAUSE
ISC solenoid's step is out of the specified range. $\text { O step } \leqq \text { Solenoid step } \leqq 250 \text { step }$	- ISC solenoid malfunction. - ISC solenoid's step is out of the specified range. - ECU malfunction.

INSPECTION

1) Remove the front seat.
2) Turn the ignition switch "OFF" position.
3) Check the ISC solenoid coupler for loose or poor contacts.
4) Turn the ignition switch "ON" position to check the ISC solenoid operation.

[When Ignition switch "OFF"]

[When Ignition switch "ON"]
Is OK?

-	- LY, G, BBr or YL wire loose or poor contacts on the ISC solenoid coupler, or poor (K1), (K2), (K3) or (K4) connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection.
NO	Replace the ISC solenoid with a new one.

RV250 EF

GT2501スREF

"C31" GP SWITCH CIRCUIT MALFUNCTION

DETECTED CONDITION	POSSIBLE CAUSE
GP switch voltage is out of the specified range for 2 sec. and more. \bullet GP switch circuit open or short. $0.15 \mathrm{~V}<$ Switch voltage $<3.93 \mathrm{~V}$ GP switch malfunction.	

■ INSPECTION

1) Remove the frame cover.
2) Turn the ignition switch "OFF" position.
3) Check the GP switch coupler for loose or poor contacts.
If OK, then measure the GP switch resistance.
4) Park the motorcycle on a firm, flat surface vertically.
5) Turn the side-stand to up-right position.
6) Make sure the engine stop switch is in the " \cap " position.
7) Insert the needle pointed probes to the GP switch coupler.
8) Turn the ignition switch "ON" position.
9) Measure the resistance at the wire side coupler between GL wire and L wire, when shifting the gearshift lever from 1st to Top.

GP switch resistance

$$
\begin{gathered}
100 \Omega \sim 2.0 \mathrm{~K} \Omega \\
(\mathrm{GL}-\mathrm{L})
\end{gathered}
$$

凅 Tester knob indication : Resistance (KQ)

Is the resistance OK?

	- GL or L wire open or shorted to ground, or poor connection of ECU or coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection.
NO	Open or short circuit in the GL or L wire.

"C32" or "C33" FUEL INJECTOR CIRCUIT MALFUNCTION

DETECTED CONDITION	POSSIBLE CAUSE
Injector signal is interrupted continuous for more than 1 sec. when ECU confirm injector running surge at each combustion chamber.	\bullet Injector circuit open or short. \bullet Injector malfunction. \bullet ECU malfunction.

INSPECTION

© Step 1

1) Remove the fuel tank and frame cover.
2) Turn the ignition switch "OFF" position.
3) Check the injector couplers NO. 1 (1) and NO. 2 (2) for loose or poor contacts.
If OK , then measure the injector resistance.

> ※ (A) : Fuel injector NO. 1
> (B) : Fuel injector NO. 2
4) Disconnect the injector couplers NO. 1 (1) and NO. 2 (2) and measure the resistance between terminals.

Injector resistance

$$
\begin{gathered}
11.4 \sim 12.6 \Omega \text { at } 20^{\circ} \mathrm{C} \\
\left(68^{\circ} \mathrm{F}\right)
\end{gathered}
$$

Tester knob indication : Resistance (Ω)
5) If OK , then check the continuity between injector terminals and ground.

圆 Tester knob indication : Resistance (Ω)

Are the resistance and continuity OK?

YES	Go to Step 2
NO	Replace the Injector with a new one.

Step 2

1) Turn the ignition switch "ON" position.
2) Measure the injector voltage between $\mathrm{YR}(\mathrm{NO} .1)$, RB(NO.2) wire and ground.

	Battery voltage
Injector voltage	$([N O .1] \oplus \mathrm{YR}-\ominus$ Ground,
	$[\mathrm{NO} .2] \oplus \mathrm{RB}-\ominus$ Ground $)$

Tester knob indication : Voltage (---)

NOTE
Injector voltage can be detected only 3 seconds after ignition switch is turned "ON" position.

Is the voltage OK?

	- YR(NO.1) or RB(NO.2) wire open or shorted to ground, or poor (41) (NO.1) or (12) (NO.2) connection of ECU coupler.
YESIf wire and connection are OK, intermittent trouble or faulty ECU. Recheck each terminal and wire harness for open circuit and poor connection.	
NO	Inspect the fuel pump or fuel pump relay. (Refer to page 4-2-4)

"C37" SAV SOLENOID MALFUNCTION

DETECTED CONDITION	POSSIBLE CAUSE
No voltage is applied from ECU to SAV solenoid by 400 sec..	- SAV solenoid circuit open or short. \bullet SAV solenoid malfunction. \bullet ECU malfunction.

INSPECTION

1) Remove the frame cover.
2) Turn the ignition switch "OFF" position.
3) Check the SAV solenoid coupler for loose or poor contacts.
4) Connect the SAV solenoid coupler.
5) Turn the ignition switch "ON" position.
6) Measure the voltage at the wire side coupler between BL wire and ground.

国 Tester knob indication : Voltage (---)

Is the voltage OK?

YES	BL wire open or shorted to ground, or poor (L3) connection of ECU coupler. If wire and connection are OK, intermittent trouble or faulty ECU. Recheck each terminal and wire harness for open circuit and poor connection.
NO	Replace the SAV solenoid with a new one.

"C41" FUEL PUMP RELAY CIRCUIT MALFUNCTION

DETECTED CONDITION
Voltage is applied continuous for more than $5 \mathrm{sec} .$,
battery voltage $\geqq 3.2 \mathrm{~V}$ when fuel pump relay is
"OFF" position or battery voltage $<1.5 \mathrm{~V}$ when fuel
pump relay is "ON" position.

INSPECTION

1) Remove the frame cover.
2) Turn the ignition switch "OFF" position.
3) Check the fuel pump relay coupler for loose or poor contacts.
If OK , then check the insulation and continuity. Refer to page 4-2-4 for details.
※ (A) : Head lamp relay
(B) : Fuel pump relay
© : Main relay
(D) : Turn signal relay

Is the Fuel pump relay OK?

	- GW or BBr wire open or shorted to ground, or poor (44 or ((1) connection of ECU coupler. - If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection. - Inspect the fuel injectors. (Refer to page 4-1-39)
NO	Replace the fuel pump relay with a new one.

"C43" OXYGEN SENSOR HEATER CIRCUIT MALFUNTION

■ INSPECTION

1) Remove the frame cover.
2) Turn the ignition switch "OFF" position.
3) Check the Oxygen sensor heater coupler for loose or poor contacts.
If OK, then measure the Oxygen sensor heater voltage.
4) Disconnect the coupler and then turn the ignition switch "ON" position.
5) Measure the voltage between $O B$ wire terminal and B (or ground) wire terminal.

> Oxygen sensor heater voltage

Battery voltage
$(\oplus \mathrm{OB}-\ominus \mathrm{B})$
($\oplus \mathrm{OB}-\ominus$ Ground)
国 Tester knob indication : Voltage (---)

Is the voltage OK?

YES	- OB or B wire open or shorted to ground, or poor (3) or (H1 connection of ECU coupler. If wire and connection are OK, intermittent trouble or faulty ECU. - Recheck each terminal and wire harness for open circuit and poor connection.
NO	Replace the Oxygen sensor with a new one.

SENSORS

○ PICK-UP COIL INSPECTION

The pick-up coil (1) is installed in the magneto cover. (Refer to page 4-1-24)

○ PICK-UP COIL REMOVAL AND INSTALLATION

- Remove the magneto cover.
- Install the magneto cover in the reverse order of removal.

○ IAP SENSOR INSPECTION

The intake air pressure (IAP) sensor NO. 1 (2) and NO. 2 (3) are installed at each intake pipe.
(Refer to page 4-1-30)
○ IAP SENSOR REMOVAL AND INSTALLATION

- Remove the fuel tank.
- Remove the IAP sensor NO. 1 \& NO. 2 from each intake pipe.
- Install the IAP sensor NO. 1 \& NO. 2 in the reverse order of removal.

© TP SENSOR INSPECTION

The throttle position (TP) sensor (4) is installed at the throttle body. (Refer to page 4-1-25)
© TP SENSOR REMOVAL AND INSTALLATION

\leq CAUTION
Never remove or adjust the TP sensor.

○ ET SENSOR INSPECTION

The engine temperature (ET) sensor (1) is installed at the front cylinder. (Refer to page 4-1-28)
© ET SENSOR REMOVAL AND INSTALLATION

- Remove the ET sensor.
- Install the ET sensor in the reverse order of removal.
(d) ET sensor : 5 ~ $8 \mathrm{~N} \cdot \mathrm{~m}(0.5 \sim 0.8 \mathrm{kgf} \cdot \mathrm{m})$

○ IAT SENSOR INSPECTION

The intake air temperature (IAT) sensor (2) is installed at the downside of the air cleaner case. (Refer to page 4-1-32)

© IAT SENSOR REMOVAL AND INSTALLATION

- Remove the fuel tank.
- Remove the IAT sensor from the air cleaner case.
- Install the IAT sensor in the reverse order of removal.

RO SWITCH INSPECTION, REMOVAL AND INSTALLATION

The roll over (RO) switch (3) is located in the downside of the front seat lock.
(Refer to page 4-1-35)

- Romove the front seat.
- Remove the RO switch from the frame.
- Install the RO switch in the reverse order of removal.

FUEL SYSTEM AND THROTTLE BODY

CONTENTS

FUEL SYSTEM 62 (4-2-1)
REMOVAL AND DISASSEMBLY 63 (4-2-2)
REASSEMBLY AND INSTALLATION 64 (4-2-3)
FUEL PRESSURE INSPECTION 65 (4-2-4)
FUEL PUMP RELAY INSPECTION 65 (4-2-4)
FUEL MESH FILTER INSPECTION AND CLEANING 66 (4-2-5)
FUEL GAUGE INSPECTION 66 (4-2-5)
THROTTLE BODY 67 (4-2-6)
REMOVAL 68 (4-2-7)
CLEANING 69 (4-2-8)
INSPECTION 69 (4-2-8)
INSTALLATION 70 (4-2-9)

© CAUTION

Gasoline must be handled carefully in an area well ventilated and away from fire or spark.

FUEL SYSTEM

REMOVAL AND DISASSEMBLY

- Remove the front seat.
- Remove the fuel tank mounting bolts and take off the hooks.

- Disconnect the fuel gauge coupler (1).

- Remove the fuel pump coupler (2).
- Remove the fuel injector hose (3).

! CAUTION
After disconnecting the fuel injector hose (3), insert a blind plug into the end to stop fuel leakage.

- Remove the fuel tank rearward.

! CAUTION
As gasoline leakage may occur in this operation, keep away from fire and sparks.

- Remove the fuel pump assembly (1) by removing its mounting bolts diagonally.

A WARNING
* Gasoline is highly flammable and explosive.
* Keep heat, spark and flame away.

- Remove the fuel gauge (2).

REASSEMBLY AND INSTALLATION

Reassembly and installation the fuel tank in the reverse order of removal and disassembly.

- When installing the fuel pump assembly, first tighten all the fuel pump assembly mounting bolts lightly in diagonal stages, and then tighten them in the above tightening order.

NOTE

Apply a small quantity of the THREAD LOCK "1324" to the thread portion of the fuel pump mounting bolt.
d $\sqrt{1324}$ THREAD LOCK " 1324 "

FUEL PRESSURE INSPECTION

- Remove the front seat.
- Place a rag under the fuel injector hose.
- Disconnect the fuel injector hose from the fuel hose joint.
- Install the special tool between the fuel tank and fuel hose joint.

Fuel pump pressure gauge
: 09915-54510
Turn the ignition switch "ON" position and check the fuel pressure.

$$
\begin{array}{cc}
\text { Fuel pressure } & \text { Approx. } 3.4 \sim 3.7 \mathrm{kgf} / \mathrm{cm}^{2} \\
\text { of fuel pump } & (333 \sim 363 \mathrm{kPa}, 48.4 \sim 52.6 \mathrm{psi})
\end{array}
$$

If the fuel pressure is lower than the specification, inspect the following items :

* Fuel hose leakage
* Clogged fuel filter
* Pressure regulator
* Fuel pump

If the fuel pressure is higher than the specification, inspect the following items :

* Fuel pump check valve
* Pressure regulator

\triangle WARNING

- Before removing the special tool, turn the ignition switch to "OFF" position and release the fuel pressure slowly.
- Gasoline is highly flammable and explosive. Keep heat, sparks and flame away.

First, check the insulation between (1) and (2) terminals with pocket tester. Then apply 12 volts to (3) and (4) terminals, \oplus to (3) and \ominus to (4), and check the continuity between (1) and (2).
If there is no continuity, replace it with a new one.

FUEL MESH FILTER INSPECTION AND CLEANING

- If the fuel mesh filter is clogged with sediment or rust, fuel will not flow smoothly and loss in engine power may result.
- Blow the fuel mesh filter with compressed air.

NOTE

If the fuel mesh filter is clogged with many sediment or rust, replace the fuel filter cartridge with a new one.

FUEL GAUGE INSPECTION

- Measure resistance between the terminals when float is at the position instead below.

Fuel float position Resistance between terminals

F	Approx. $95 \sim 105 \Omega$
$1 / 2$	Approx. 38Ω
E	Approx. $4 \sim 10 \Omega$

- If the resistance measured is out of the specification, replace the gauge with a new one.
- Inspect the fuel level meter.

THROTTLE BODY

REMOVAL

- Remove the fuel tank.
- Disconnect the fuel hoses.
- Remove the all couplers to related the throttle body.
- Loosen the throttle body clamp screws.
- Remove the air cleaner box.
- Disconnect the throttle cables from their drum.
- Dismount the throttle body assembly.

© CAUTION
Be careful not to damage the throttle cable
bracket when dismounting or remounting the
throttle body assembly.
\& After disconnecting the throttle cables, do not
snap the throttle valve from full open to full
close. It may cause damage to the throttle
valve and throttle body.

CLEANING

- Clean all passageways with a spray-type throttle body cleaner and blow dry with compressed air.

A. WARNING

Some throttle body cleaning chemicals, especially dip-type soaking solutions, are very corrosive and must be handled carefully. Always follow the chemical manufacturer's instructions on proper use, handling and storage.

\triangle CAUTION

Do not use wire to clean passageways. Wire can damage passageways. If the components cannot be cleaned with a spray cleaner it may be necessary to use a dip-type cleaning solution and allow them to soak. Always follow the chemical manufacturer's instructions for proper use and cleaning of the throttle body components. Do not apply throttle body cleaning chemicals to the rubber and plastic materials.

INSPECTION

- Check following items for any damage or clogging.
* O-ring
* Throttle shaft bushing and seal
* Injector cushion seal
* Fuel injector
* Throttle body
* Intake pipe
* Throttle valve
* Vacuum hose

Check fuel injector filter for evidence of dirt and contamination. If present, clean and check for presence of dirt in the fuel lines and fuel tank.

INSTALLATION

Installation is in the reverse order of removal. Pay attention to the following points :

\lfloor CAUTION
Never operate the idle nuts (1)(NO.1) and (2)(NO.2) to avoid variations of the carburetion setting.

- Connect the throttle cable to the throttle cable drum.
- Adjust the throttle cable play with the cable adjuster.

ELECTRICAL SYSTEM

CONTENTS
LOCATION OF ELECTRICAL COMPONENTS 72 (5-1)
IGNITION SYSTEM 74 (5-3)
CHARGING SYSTEM 76 (5-7)

LOCATION OF ELECTRICAL COMPONENTS

IGNITION SYSTEM

INSPECTION

■ MAGNETO

Using the pocket tester, measure the resistance between the lead wires in the following table.
If the resistance is not within the specified value, replace the magneto coil, with a new one.

Stator coil resistance	Standard
Pick-up coil	G - L Approx. $85 \sim 105 \Omega$
Charging coil	Y - Y Approx. $0.2 \sim 1.0 \Omega$

圆 Tester knob indication : Resistance (Ω)

- CAUTION

When mounting the stator on the magneto cover, apply a small quantity of THREAD LOCK "1324" to the threaded parts of screws.

```
-\longdiv{1324 THREAD LOCK "1324"}
```


IGNITION COIL RESISTANCE INSPECTION

Disconnect the ignition coil lead wire.
Measure the ignition coil resistance in bolt the primary and secondary windings. If the resistance is not within the standard range, replace the ignition coil with a new one.

IGNITION COIL / PLUG CAP RESISTANCE
Primary $\quad 3.5 \sim 5.5 \Omega(\oplus$ Terminal $-\ominus$ Terminal $)$
Secondary $\quad 20 \sim 31 \mathrm{~K} \Omega$ (Plug cap $-\oplus$ Terminal)

回 Tester knob indication : Resistance (KQ)

CHARGING SYSTEM

INSPECTION

\square CHARGING OUTPUT CHECK

Start the engine and keep it running at 5,000 rpm. Using the pocket tester, measure the DC voltage between the battery terminal \oplus and \ominus.
If the voltage is not within the specified value, check the magneto no-load performance and regulator / rectifier.

4. CAUTION

When making this test, be sure that the battery is full-charged condition.

Charging output
 (Regulated voltage)
 $13.5 \sim 15.0 \mathrm{~V}$
 (at 5,000 rpm)

圆 Tester knob indication : Voltage (---)

MAGNETO NO-LOAD PERFORMANCE

Disconnect the three lead wires from the magneto terminal.
Start the engine and keep it running at 5,000 rpm. Using the pocket tester, measure the AC voltage between the three lead wires.
If the voltage is under the specified value, replace the magneto with a new one.

```
Magneto no-load
    performance
    More than 60 V (at 5,000 rpm)
```

四 Tester knob indication : Voltage (---)

REGULATOR / RECTIFIER

Disconnect the regulator / rectifier couplers.
Measure the voltage between the terminals using the pocket tester as indicated in the table below.
If the voltage is not within the specified value, replace the regulator / rectifier with a new one.

Unit : V

Tester knob indication : Diode test ($\leftarrow \leftarrow$)

Downloaded from www.Manualslib.com manuals search engine

SERVICING INFORMATION

TROUBLESHOOTING	80 (7-1-1)
SPECIAL TOOLS	89 (7-8)
TIGHTENING TORQUE	90 (7-11)
SERVICE DATA	91 (7-19-1)
WIRING DIAGRAM (RV250 EF)	94 (7-31-1)
WIRING DIAGRAM (GT250家區	96 (7-32-1)
WIRING DIAGRAM (GU250 ER)	98 (7-32-3)

TROUBLESHOOTING

© MALFUNCTION CODE AND DEFECTIVE CONDITION

MALFUNCTION CODE	DETECTED ITEM	DETECTED FAILURE CONDITION
C		CHECK FOR

MALFUNCTION CODE	DETECTED ITEM	DETECTED FAILURE CONDITION
C24 / C25	Ignition coil (IG coil), NO. 1 / NO. 2	Ignition signal is interrupted continuous by 31 times or more when ECU confirm ignition surge at each combustion chamber. In this case, the code C 24 or C 25 is indicated.
		Ignition coil, wiring / coupler connection, power supply from the battery.
C27	Idle speed control solenoid (ISC solenoid)	The idle speed control solenoid step should be the following. O step \leqq solenoid step $\leqq 250$ step Without the above range, C27 is indicated.
		Idle speed control solenoid, lead wire / coupler connection.
C31	Gear position switch (GP switch)	It judges from gear position voltage, engine speed and throttle position by ECU, when 0.15 V < Gear position voltage < 3.93 V for more 2 sec .. If gear position voltage get out of the above voltage, C31 is indicated.
		Gear position switch, wiring / coupler connection, gearshift cam etc.
C32 / C33	Fuel injector, NO. 1 / NO. 2	Injector signal is interrupted continuous for more than 1 sec . when ECU confirm injector running surge at each combustion chamber, C32 or C33 is indicated.
		Injector, wiring / coupler connection, power supply to the injector.
C37	Secondary air valve solenoid (SAV solenoid)	No voltage is applied from ECU to secondary air valve solenoid by 400 sec .. In this case, the code 37 is indicated.
		Secondary air valve solenoid, lead wire / coupler connection.
C41	Fuel pump relay	Voltage is applied continuous for more than 5 sec., battery voltage $\geqq 3.2 \mathrm{~V}$ when fuel pump relay is "OFF" position or battery voltage $<1.5 \mathrm{~V}$ when fuel pump relay is " ON " position. In this case, the code 41 is indicated.
		Fuel pump relay, connecting lead wire, power source to fuel pump relay, fuel injector.
C43	Oxygen sensor heater ($\mathrm{O}_{2} \mathrm{~S}$ heater)	The oxygen sensor heater signal is not inputted in ECU.
		Oxygen sensor heater, lead wire / coupler connection.

ENGINE

Complaint

Engine will not start or is hard to start.

Symptom and possible causes
Compression too low

1. Tappet clearance out of adjustment.
2. Worn valve guides or poor seating of valves.
3. Mistimed valves.
4. Excessively worn piston rings.
5. Worn-down cylinder bore.
6. Starter motor cranks too slowly.
7. Poor seating of spark plugs.

Plug not sparking

1. Fouled spark plugs.
2. Wet spark plugs.
3. Defective ignition coils.
4. Open or short in high-tension cord.
5. Defective pick-up coil.
6. Defective ECU.
7. Open-circuited wiring connections.

No fuel reaching the intake manifold

1. Clogged fuel filter or fuel hose.
2. Defective fuel pump.
3. Defective fuel pressure regulator.
4. Defective fuel injector.
5. Defective fuel pump relay.
6. Defective ECU.
7. Open-circuited wiring connections.

Incorrect fuel / air mixture

1. Defective fuel pump.
2. Defective fuel pressure regulator.
3. Defective pick-up coil.
4. Defective IAP sensor.
5. Defective ECU.
6. Defective ET sensor.
7. Defective IAT sensor.

Remedy

Adjust.
Repair or replace.
Adjust.
Replace.
Replace.
See electrical section.
Retighten.

Clean.
Clean and dry.
Replace.
Replace.
Replace.
Replace.
Repair or replace.

Clean or replace.
Replace.
Replace.
Replace.
Replace.
Replace.
Check and repair.

Replace.
Replace.
Replace.
Replace.
Replace.
Replace.
Replace.

Complaint	Symptom and possible causes	Remedy
Engine idles poorly.	1. Tappet clearance out of adjustment. 2. Poor seating of valves. 3. Defective valve guides. 4. Worn down camshafts. 5. Too wide spark plug gaps. 6. Defective ignition coils. 7. Defective pick-up coil. 8. Defective ECU. 9. Defective fuel pump. 10. Imbalanced throttle valve or SAV solenoid. 11. Damaged or cracked vacuum hose.	Adjust. Replace or repair. Replace. Replace. Adjust or replace. Replace. Replace. Replace. Replace. Adjust. Replace.
Engine stalls often	Incorrect fuel / air mixture 1. Defective IAP sensor or circuit. 2. Clogged fuel filter. 3. Defective fuel pump. 4. Defective fuel pressure regulator. 5. Defective ET sensor. 6. Defective IAT sensor. 7. Damaged or cracked vacuum hose. Fuel injector improperly operating 1. Defective fuel injectors. 2. No injection signal from ECU. 3. Open or short circuited wiring connection. 4. Defective battery or low battery voltage. Control circuit or sensor improperly operating 1. Defective ECU. 2. Defective fuel pressure regulator. 3. Defective IAT sensor. 4. Defective pick-up coil. 5. Defective ET sensor. 6. Defective fuel pump relay. Engine internal parts improperly operating 1. Fouled spark plugs. 2. Defective pick-up coil or ECU. 3. Clogged fuel hose. 4. Tappet clearance out of adjustment.	Repair or replace. Clean or replace. Repair or replace. Repair or replace. Replace or recharge. Replace. Replace. Replace. Replace. Replace. Replace. Clean. Replace. Clean. Adjust.

Complaint	Symptom and possible causes	Remedy
Noisy engine.	Excessive valve chatter 1. Too large tappet clearance. 2. Weakened or broken valve springs. 3. Worn tappet or cam surface. 4. Worn and burnt camshaft journal. Noise seems to come from piston 1. Worn down pistons or cylinders. 2. Combustion chambers fouled with carbon. 3. Worn piston pins or piston pin bore. 4. Worn piston rings or ring grooves. Noise seems to come from cam chain 1. Stretched chain. 2. Worn sprockets. 3. Tension adjuster not working. Noise seems to come from clutch 1. Worn splines of countershaft or hub. 2. Worn teeth of clutch plates. 3. Distorted clutch plates, driven and drive. 4. Worn clutch release bearing. 5. Weakened clutch dampers. Noise seems to come from crankshaft 1. Rattling bearings due to wear. 2. Worn and burnt big-end bearings. 3. Worn and burnt journal bearings. Noise seems to come from transmission 1. Worn or rubbing gears. 2. Worn splines. 3. Worn bearings. 4. Worn or rubbing primary gears.	Adjust. Replace. Replace. Replace. Replace. Clean. Replace. Replace. Replace. Replace. Repair or replace. Replace. Replace. Replace. Replace. Replace the primary driven gear. Replace.

Complaint	Symptom and possible causes	Remedy
Engine runs poorly in high speed range.	Defective engine internal / electrical parts 1. Weakened valve springs. 2. Worn camshafts. 3. Valve timing out of adjustment. 4. Too narrow spark plug gaps. 5. Ignition not advanced sufficiently due to poorly working timing advance circuit. 6. Defective ignition coils. 7. Defective pick-up coil. 8. Defective ECU. 9. Clogged fuel hose, resulting in inadequate fuel supply to injector. 10. Defective fuel pump. 11. Defective SAV solenoid. 12. Clogged air cleaner element. Defective air flow system 1. Clogged air cleaner element. 2. Defective throttle valve. 3. Sucking air from throttle body joint. 4. Defective ECU. Defective control circuit or sensor 1. Low fuel pressure. 2. Defective IAT sensor. 3. Defective pick-up coil. 4. Defective IAP sensor. 5. Defective ECU. 6. Defective SAV solenoid.	Replace. Replace. Adjust. Adjust. Replace ECU. Replace. Replace. Replace. Clean and prime. Replace. Replace. Clean. Clean or replace. Adjust or replace. Repair or replace. Replace. Repair or replace. Replace. Replace. Replace. Replace. Replace.

Complaint	Symptom and possible causes	Remedy
Engine lacks power.	Defective engine internal / electrical parts 1. Loss of tappet clearance. 2. Weakened valve springs. 3. Valve timing out of adjustment. 4. Worn piston rings or cylinders. 5. Poor seating of valves. 6. Fouled spark plugs. 7. Incorrect spark plugs. 8. Clogged injectors. 9. Clogged air cleaner element. 10. Sucking air from throttle valve or vacuum hose. 11. Too much engine oil. 12. Defective fuel pump or ECU. 13. Defective pick-up coil and ignition coils. Defective control circuit or sensor 1. Low fuel pressure. 2. Defective IAT sensor. 3. Defective pick-up coil. 4. Defective IAP sensor. 5. Defective ECU. 6. Defective SAV solenoid. 7. Defective GP switch.	Adjust. Replace. Adjust. Replace. Repair. Clean or replace. Adjust or replace. Clean. Clean. Retighten or replace. Drain out excess oil. Replace. Replace. Repair or replace. Replace. Replace. Replace. Replace. Replace. Replace.
Engine overheats.	Defective engine internal parts 1. Heavy carbon deposit on piston crowns. 2. Not enough oil in the engine. 3. Defective oil pump or clogged oil circuit. 4. Sucking air from intake pipes. 5. Use incorrect engine oil. 6. Defective oil cooler. Lean fuel / air mixture 1. Short-circuited IAP sensor / lead wire. 2. Short-circuited IAT sensor / lead wire. 3. Sucking air from intake pipe joint. 4. Defective fuel injectors. 5. Defective ET sensor. The other factors 1. Ignition timing too advanced due to defective timing advance system (ET sensor, pick-up coil, GP switch and ECU). 2. Drive chain is too tight.	Clean. Add oil. Replace or clean. Retighten or replace Change. Clean or replace. Repair or replace. Repair or replace. Repair or replace. Replace. Replace. Replace. Adjust.

Complaint	Symptom and possible causes	Remedy
Dirty or heavy exhaust smoke.	1. Too much engine oil in the engine. 2. Worn piston rings or cylinders. 3. Worr valve guides. 4. Cylinder wall scored or scuffed. 5. Worn valves stems. 6. Defective stem seals. 7. Worn side rails.	Check with inspection win- dow, drain out excess oil. Replace. Replace. Replace. Replace. Replace. Replace.
Slipping clutch.	1. Weakened clutch springs. 2. Worn or ristorted pressure plates. 3. Distorted clutch plates or pressure plates.	Replace. Replace. Replace.
Dragging clutch.	1. Some clutch springs weakened while others are not. 2. Distorted pressure plates or clutch plates.	Replace. Replace.
Transmission will not shift.	1. Broken gearshift cam. 2. Distorted gearshift forks. 3. Worn gearshift pawl.	Replace. Replace. Replace.
Transmission will not shift back.	1. Broken return spring on shift shaft. 2. Rubbing or sticky ghift shaft. 3. Distorted or worn gearshift forks.	Replace. Repair or replace. Replace.
Transmission jumps out of gear.	1. Worn shifting gears on driveshaft or countershaft. 2. Distorted or worr gearshift forks. 3. Weakened stopper spring on gearshift stopper.	Replace. Replace. Replace.

© ELECTRICAL

Complaint	Symptom and possible causes	Remedy
No sparking or poor sparking.	1. Defective ignition coils or spark plug caps. 2. Defective spark plugs. 3. Defective pick-up coil. 4. Defective ECU. 5. Defective RO switch. 6. Open-circuited wiring connections.	Replace. Replace. Replace. Replace. Replace. Check and repair.
Spark plug soon become fouled with carbon.	1. Mixture too rich. 2. Idling speed set too high. 3. Incorrect gasoline. 4. Dirty element in air cleaner. 5. Spark plugs too cold.	Inspect El system. Inspect El system. Change. Clean or replace. Replace by hot type plug.
Spark plug become fouled too soon.	1. Worn piston rings. 2. Pistons or cylinders worn. 3. Excessive clearance of valve stems in valve guides. 4. Worn stem oil seal.	Replace. Replace. Replace. Replace.
Spark plug electrodes overheat or burn.	1. Spark plugs too hot. 2. The engine overheats. 3. Spark plugs loose. 4. Mixture too lean.	Replace by cold type plug. Tune up. Retighten. Inspect El system.
Magneto charge, but charging rate is below the specification.	1. Lead wires tend to get shorted or open-circuited or loosely connected at terminals. 2. Grounded or open-circuited stator coils of magneto. 3. Defective regulator / rectifier. 4. Defective cell plates in the battery.	Repair or retighten. Replace. Replace. Replace the battery.
Magneto overcharges.	1. Internal short - circuit in the battery. 2. Resistor element in the regulator / rectifier damaged or defective. 3. Regulator / rectifier poorly grounded.	Replace the battery. Replace. Clean and tighten ground connection.
Magneto does not charge.	1. Open - or short - circuited lead wirse, or loose lead connections. 2. Short - circuited, grounded or open stator coil. 3. Short - circuited or punctured regulator / rectifier.	Repair or replace or retighten. Replace. Replace.
Unstable charging.	1. Lead wire insulation frayed due to vibration resulting in intermittent shorting. 2. Magneto internally shorted. 3. Defective regulator / rectifier.	Repair or replace. Replace. Replace.
Starter switch is not effective.	1. Battery run down. 2. Defective switch contacts. 3. Brushes not seating properly on commutator in starter motor. 4. Defective starter relay / ignition interlock switch. 5. Defective main fuse.	Recharge or replace. Replace. Repair or replace. Replace. Replace.

SPECIAL TOOLS

Special tools	Part Number - Part Name - Description
US	09900-27000
	Mode select switch
	Inspect El system sensor.
	09915-54510
	Fuel pump pressure gauge
	Measure fuel pressure of fuel pump.

TIGHTENING TORQUE

○ EI SYSTEM PARTS

ITEM	$\mathbf{N} \cdot \mathbf{m}$	$\mathbf{k g f} \cdot \mathbf{m}$
Engine temperature sensor (ET sensor)	$5 \sim 8$	$0.5 \sim 0.8$
Fuel injector mounting bolt	$5 \sim 8$	$0.5 \sim 0.8$
Intake air temperature sensor (IAT sensor)	$5 \sim 8$	$0.5 \sim 0.8$

SERVICE DATA

© EI SENSORS

ITEM	SPECIFICATION		NOTE
IAP sensor input voltage	4.5 ~ 5.5 V		
IAP sensor output voltage	Approx. 3.7 ~ 3.9 V when ignition switch "ON"		
TP sensor input voltage	4.5 ~ 5.5 V		
TP sensor output voltage	Closed	Approx. 0.3 V	
	Opened	Approx. 4.5 V	
IAT sensor resistance	$0.081 \sim 48.352 \mathrm{~K} \Omega$ [When Intake air temperature is $-40^{\circ} \mathrm{C} \sim 130^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \sim 266^{\circ} \mathrm{F}\right)$]		
IAT sensor resistance (each temperature)	Refer to page 48 (4-1-33)		
RO switch resis	∞, (Infinity) [at normal condition]		
RO	0Ω [at leaned more than 60°]		
GP switch resistance	100 ~ $2.0 \mathrm{~K} \Omega$		
Oxygen sensor heater voltage	Battery voltage		
SAV solenoid voltage	Battery voltage		
ET sensor resistance	0.102 ~ $81.000 \mathrm{~K} \Omega$ [When Engine temperature is $-20^{\circ} \mathrm{C} \sim 180^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \sim 356^{\circ} \mathrm{F}\right)$]		
ET sensor resistance [To ECU] (each temperature)	$-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$	Approx. $75.5 \mathrm{~K} \Omega$	
	$0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$	Approx. 28.7 K	
	$20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	Approx. $12.2 \mathrm{~K} \Omega$	
	$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$	Approx. $5.6 \mathrm{~K} \Omega$	
	$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	Approx. $2.8 \mathrm{~K} \Omega$	
	$80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$	Approx. $1.5 \mathrm{~K} \Omega$	
	$120^{\circ} \mathrm{C}\left(248^{\circ} \mathrm{F}\right)$	Approx. $0.5 \mathrm{~K} \Omega$	
	$140^{\circ} \mathrm{C}\left(284^{\circ} \mathrm{F}\right)$	Approx. $0.3 \mathrm{~K} \Omega$	
	$160^{\circ} \mathrm{C}\left(320^{\circ} \mathrm{F}\right)$	Approx. $0.2 \mathrm{~K} \Omega$	
	$180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$	Approx. $0.13 \mathrm{~K} \Omega$	

© THROTTLE BODY

ITEM	SPECIFICATION	NOTE
I.D. No.	13400 H 88	
Bore size	$\not \subset 28$	
Idle rpm	$1,400 \sim 1,600 \mathrm{rpm}$	
Throttle cable play	$0.5 \sim 1.0 \mathrm{~mm}(0.02 \sim 0.04 \mathrm{in})$	

○ FUEL INJECTOR + FUEL PUMP

ITEM	SPECIFICATION	NOTE
Fuel injector resistance	$11.4 \sim 12.6 \Omega$ at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	
Fuel injector voltage	Battery voltage	
Fuel pressure of fuel pump	Approx. $3.4 \sim 3.7 \mathrm{kgf} / \mathrm{cm}^{2}(333 \sim 363 \mathrm{kPa}, 48.4 \sim 52.6 \mathrm{psi})$	

© ELECTRICAL

Unit : mm (in)

ITEM		STANDARD	NOTE
Ignition timing	BTDC $13^{\circ} / 2,000 \mathrm{rpm} \sim 30^{\circ} / 6,000 \mathrm{rpm}$		
Spark plug	Type	CR8E	
	Gap	$0.7 \sim 0.8$ (0.028 ~ 0.032)	
	Hot type	CR7E	
	Standard type	CR8E	
	Cold type	CR9E	
Spark performance	More than 8 mm (0.32 in)		
Ignition coil primary peak voltage	150 V and more		
Ignition coil resistance	Primary	$3.5 \sim 5.5 \Omega$	
	Secondary	$20 \sim 31 \mathrm{~K} \Omega$	
Stator coil resistance	Pick-up coil	Approx. $85 \sim 105 \Omega$	G-L
	Charging coil	Approx. $0.2 \sim 1.0 \Omega$	Y-Y
Magneto no-load performance	More than $60 \mathrm{~V} / 5,000 \mathrm{rpm}$		
Charging output (Regulated voltage)	$13.5 \sim 15.0 \mathrm{~V} / 5,000 \mathrm{rpm}$		
Battery	Type	YTX12-BS	
	Capacity	12V 10Ah	
	Standard electrolyte S.G.	1.320 at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$	
Fuse size	Main	30A	
	Head lamp	15A	

WIRING DIAGRAM (ev250 Ei)

WIRING DIAGRAM (GV250 조요)

WIRING DIAGRAM (GV250록)

Prepared by

1st Ed. APR. 2009.

Manual No. 99000-95620
Printed in Korea

S\＆T Motors Co．，Ltd．

